Crystal Structure of the $\mathbf{4 H ~ B a C r O} 3$ Polytype

B. L. CHAMBERLAND
Department of Chemistry and Institute of Materials Science, The University of Connecticut, Storrs, Connecticut 06268

Received February 9, 1982; in final form March 29, 1982

Abstract

The structure of the four-layer hexagonal BaCrO_{3} polytype, prepared at high temperature and high pressure, was determined utilizing a Picker FACS-I diffractometer. The hexagonal black crystal was found to crystallize with a four-layer stacking sequence in space group $P f_{3} / m m c$ having unit cell parameters $a=5.660(1)$ and $c=9.357(1) \AA$. The structure was determined from 668 independent reflections of which 605 were considered observed. Equivalent reflections were averaged and this operation yielded 130 unique, observed reflections. Refinement of the structure by least-squares methods gave a conventional R value of 3.0%. The structure consists of a four-layer stacking sequence of close-packed BaO_{3} layers containing tetravalent chromium in all the octahedral oxygen interstices. The compound was found to be isostructural with $\beta-\mathrm{BaMnO}_{3}$ and the recently reported $\mathrm{BaRhO} \mathrm{O}_{3}$ and SrMnO_{3}.

Introduction

The BaCrO_{3} system was reported (1) to form a variety of different BaMO_{3} polytypes. The most stable and recurring forms were the 4 H and 6 H varieties. The structures of other BaCrO_{3} polytypes have been reported, 14 H (2) and 27 R (3). The structure of a nonstoichiometric and non-perovskite-related $\mathrm{Ba} / \mathrm{Cr} / \mathrm{O}$ product was also determined (4).

In an effort to correlate the structure of the various BaCrO_{3} polytypes with their magnetic and electrical properties, a study of the structure of the remaining polytype was originated.

Experimentation

Preparation. The preparation of BaCrO_{3} was performed in a tetrahedral anvil apparatus under a variety of conditions and uti-
lizing various reactants. The synthesis of this particular polytype was through the reaction of $\mathrm{Ba}_{2} \mathrm{CrO}_{4}$ and CrO_{2} at $1000^{\circ} \mathrm{C}$ and $60-65 \mathrm{kbar}$ for 1 hr . Powder diffraction studies and preliminary single-crystal studies indicated the presence of the four-layer analog of BaCrO_{3}. Several single crystals, isolated in the form of black hexagonal plates, showed the characteristic pattern of a four-layer structure. Indexation of the powder pattern was successfully carried out by the close analogy of the pattern with that of the isostructural high-temperature form of $\mathrm{BaMnO}_{3}(4 \mathrm{H})$. The high-pressure products were washed in dilute HCl to isolate a product free from acid-soluble reactants such as $\mathrm{BaO}, \mathrm{BaCO}_{3}$, and $\mathrm{Ba}_{2} \mathrm{CrO}_{4}$.

Crystallographic studies. Preliminary Xray powder diffraction analysis of the product indicated a four-layer BaMO_{3} polytype. Precession data taken on several single crystals showed the characteristic four-
layer repeat sequence in the $h h 0 l$ and $h k 0 l$ precession photographs.

The hexagonal plates from individual high-pressure experiments were studied by the precession method and were all found to possess hexagonal symmetry with a fourlayer stacking sequence. The space group was found to be $P_{3} / m m c, P 6_{3} m c$, or $P \overline{6} 2 c$ and the unit cell parameters from the precession data suggested $a=5.659$ and $c=$ $9.321 \AA$. The Guinier data on the powdered product yielded the parameters $a=$ $5.692(3)$ and $c=9.3592(7) \AA$, where the figures in parentheses represent the standard deviations in the last reported figure.

Structure determination. The unit cell parameters for the crystal used in the singlecrystal experiment were determined in the PICK-II least-squares refinement program using 28 reflections within the angular range $31^{\circ}<2 \theta<53^{\circ}$; the reflections were automatically centered on a Picker FACS-I four-circle diffractometer using Mo $K \alpha_{1}$ radiation ($\lambda=0.70930 \AA$). The unit cell parameters were found to be $a=5.660(1)$ and $c=9.357(1) \AA$. The calculated volume is $259.63 \AA^{3}$, giving a calculated density, with $Z=4$, of $6.07 \mathrm{~g} \mathrm{~cm}^{-3}$.

A crystal with hexagonal bipyramid shape $(0.20 \times 0.20 \times 0.29 \mathrm{~mm})($ vol. $=6.45$ $\times 10^{-6} \mathrm{~cm}^{3}$) was used for data collection. Precise dimensions of the crystal were determined with a microscope utilizing high magnification. These data were used in an absorption correction program written by N. W. Alcock and modified by B. Lee for a crystal of general shape.

Diffraction intensities were measured using Zr -filtered $\mathrm{Mo} K \alpha_{1}$ radiation at a takeoff angle of 1.5° with the diffractometer operating in the ω scan mode. Ten-second background counts were taken at both ends of a $1.4^{\circ} \theta-2 \theta$ offset corrected for dispersion. Of the 668 data collected in the angular range $2 \theta<54^{\circ}, 605$ were considered observable according to the criterion $\left|F_{F}\right|>3.0 \sigma_{F}$, where σ_{F} is defined as $0.02\left|F_{0}\right|+\left[C+k^{2}\right.$
$B]^{1 / 2 / 2}\left|F_{0}\right| L p$; the total scan count is C, k is the ratio of scanning time to the total background time, and B is the total background count. Three reflections were systematically monitored as standards during the experiment; the maximum variation in intensity observed was never greater than $\pm 3 \%$ over the data collection period.

Intensity data were corrected for Lorentzian and polarization effects, and absorption corrections were carried out using the computer program already cited. The corrected data were then averaged using a program written by L. Finger (5) using the hexagonal transformation for determining equivalent reflections. This generated 130 independent reflections and these were assigned positive $h k l$ values prior to refinement.

Structure refinement. The study of the precession photographs indicated a fourlayer stacking sequence of BaO_{3} layers with Cr located in octahedral interstices. Since this system was previousily observed for (high-temperature form) BaMnO_{3} (6), BaRhO_{3} (7), and $\mathrm{SrMnO}_{3}(8)$ systems, it was decided to attempt the refinement based on this particular $A B O_{3}$ structure. The most probable space group for these hexagonal polytypes is taken as $\mathrm{Pb}_{3} / \mathrm{mmc}$ (No. 194).

A full-matrix refinement (9) using the positional parameter for five atoms, a $1 / \sigma^{2}$ weighting scheme, zero-vaient scattering factors for Ba, Cr, and O (10), isotropic temperature factors, and corrections for secondary extinction and anomalous dispersion yielded a residual $R=0.12$ and a weighted residual $R_{\mathrm{w}}=0.22$. The final anisotropic refinement, based on a data: parameter ratio of 8.7 with the 15 independently varied parameters, yielded $R=0.030$ and R_{w} $=0.042$ for the observed data.

Table I presents the positional and anisotropic temperature parameters from the final anisotropic refinement. Except for the two ripples at the periphery of the Ba at-

TABLE I
Atomic Parameters for $\mathrm{BaCrO}_{3}(4 \mathrm{H})$

Atom	Position	\boldsymbol{x}	\boldsymbol{y}	z	$\boldsymbol{B}_{11}{ }^{a}$	$\boldsymbol{B}_{22}{ }^{a}$	$\boldsymbol{B}_{33^{a}}$
$\mathrm{Ba}(1)$	$2 a$	0	0	0	$0.77(7)$	b	$1.63(3)$
$\mathrm{Ba}(2)$	$2 c$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{4}$	$1.09(7)$	b
Cr	$4 f$	$\frac{1}{3}$	0	$0.6105(2)$	$0.73(10)$	b	$0.18(2)$
$\mathrm{O}(1)$	$6 g$	$0.3705(13)$	0.1852	0	$1.17(32)$	$1.78(36)$	$0.20(2)$
$\mathrm{O}(2)$	$6 h$		$\frac{1}{2}$	$0.97(32)$	$2.20(32)$	$0.27(8)$	

[^0]oms, the difference Fourier map was essentially flat and equivalent to 0.2 of an oxygen atom or less.

An illustration of the structure is given in Fig. 1. The figure was prepared using ORTEP (11). Bond lengths and angles calculated in the ORFFE program are given in Table II. The table of observed and calculated structure factors comprises Table III.

Results and Discussion

Of the first-row transition metals, BaMnO_{3} was first observed (6) to form a variety of different $\mathrm{Ba} \mathrm{MO}_{3}$ polytypes based on the perovskite structure. The relationship between the cubic perovskite structure and hexagonal layer structures was established by Katz and Ward (12) in 1964.

The four-layer stacking sequence $A B A C$, or the packing sequence $(h c)_{2}$, has the Zhdanov notation $|(1)(1)|$. The structure consists of pairs of face-shared octahedra which are further linked by vertices along the c axis of the unit cell. The polyhedral representation of the structure is shown in Fig. 1. This structural type has been reported for $\beta-\mathrm{BaMnO}_{3}, \mathrm{SrMnO}_{3}$, the highpressure forms of $\mathrm{BaRuO}_{3}(13)$ and BaRhO_{3} (7), and the solid solutions of $\mathrm{BaRuO}_{3} / \mathrm{Sr}-$ RuO_{3} and $\mathrm{BaMnO}_{3} / \mathrm{SrMnO}_{3}$. Lattice im-
ages of $4 \mathrm{H} \mathrm{BaCrO}_{3}$ were studied by Gai et al. (14) and their results were interpreted as showing the $(c h)_{2}$ stacking sequence.

This stable structure represents a midpoint between the perovskite structure (100% cubic packing of AO_{3} layers) and the BaNiO_{3} structure (100% hexagonal packing of AO_{3} layers). The consequence of the alternating of cubic and hexagonal packing leads to face-shared octahedral units which allow a short metal-to-metal distance for the transition metal ions. For the four-layer

Fig. 1. The projection of the hexagonal (110) plane for $\mathrm{BaCrO}_{3}(4 \mathrm{H})$.

TABLE II
Bond Lengths and Angles in $\mathrm{BaCrO}_{3}(4 \mathrm{H})$

Distances (\AA)						Angles (${ }^{\circ}$)		
$\mathrm{Ba}(1)-\mathrm{O}(1)$	6@	2.830(1)	$\bigcirc(1)-\mathrm{O}(1)$	4 (a)	2.830(1)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(1)$	3@	94.08(7)
-O(2)	6@	2.962(4)	-O(2)	4@	2.807(2)	-O(2)	3@	$170.35(17)$
						-O(2)	6@	92.49(10)
						$\mathrm{O}(2)-\mathrm{Cr}-\mathrm{O}(2)$	3@	80.16(20)
$\mathrm{Ba}(2)-\mathrm{O}(1)$	6@	$2.836(4)$						
-O(2)	6@	2.854(1)	$\mathrm{O}(2)-\mathrm{O}(2)$	2@	2.514(11)			
			-O(1)	4@	2.807(2)			
			-O(2)	2@	3.146(11)			
Cr $-\mathrm{O}(1)$	3@	1.934(1)				$\mathrm{Cr}-\mathrm{O}(2)-\mathrm{Cr}$		83.94(27)
-O(2)	3@	1.952(5)				$\mathrm{Cr}-\mathrm{O}(1)-\mathrm{Cr}$		180.0
$\mathrm{Cr}-\mathrm{Cr}$		2.611(4)						
$\mathrm{Cr}-\mathrm{O}$ (1)-Cr		3.867(2)						

TABLE III
Observed and Calculated Structure Factors (5x)

h	k	l	$F_{\text {OBS }}$	$F_{\text {calc }}$		$k l$	$F_{\text {OBS }}$	$F_{\text {calc }}$	$h k$	$k l$	$F_{\text {OBS }}$	$F_{\text {CALC }}$	h	k	l	$F_{\text {OBS }}$	$F_{\text {calc }}$	$h k$	$k l$	$F_{\text {OBS }}$	$F_{\text {calc }}$
0	0	2	50	51		310	47	41		30	19	16	2	0	1	295	289		42	363	354
0		4	755	736	0	50	54	62		31	106	106	2	0	2	791	764		43	312	310
0	0	6	263	280	0	51	97	98		32	381	392	2	0	3	686	673	24	44	174	166
0	0	8	699	699		5	256	260		33	392	397		0	4	308	304		45	224	219
0	0	10	43	48	0	53	296	306		34	171	165	2	0	5	437	439	24	46	302	283
0	1	0	37	33	0	54	165	163		35	260	263	2	0	6	535	521	25	50	461	455
0	1	1	117	111		55	208	214		36	303	303	2	0	7	121	121	25	51	30	25
0	1	2	593	567	0	56	213	204		37	44	43	2	0	8	65	62	33	30	565	593
0	1	3	605	595		57	41	37		38	95	90	2	0	9	253	252	33	32	20	26
0		4	242	230		10	1128	1157	13	39	167	162	2	0	10	154	168	33	34	207	213
0	1	5	354	356	1	12	46	41		40	633	664	2	0	11	326	315	33	36	136	141
0		6	397	398	1	14	324	306		41	23	23	2	2	0	998	1046	34	40	49	50
0	1	7	37	39	1	16	245	256		42	33	30	2	2	2	54	51	34	41	80	77
0	1	8	119	126		18	477	475		43	22	23	2	2	4	439	437	34	42	216	215
0	1	9	202	203		110	61	49		44	232	228	2	2	6	175	182	40	0	72	86
	1	10	73	87		20	49	48		45	20	18	2	2	8	515	505	40	01	165	166
0	1	11	292	286		21	129	134		46	152	158	2	3	1	77	75	40	2	461	478
0	3	0	832	902		22	411	408		47	27	18	2	3	2	345	356	40	03	413	425
0	3	1	43	46		23	488	491		48	332	332	2	3	3	314	322	40	4	211	211
0	3	2	42	39		24	232	227		50	35	41	2	3	4	134	127	40	5	287	296
0	3	3	33	43		25	316	320	15	51	91	87	2	3	5	215	212	40	06	366	368
0	3	4	266	269		26	326	314	15	52	262	260	2	3	6	284	278	40	07	83	81
0	3	5	34	31		27	56	53	15	53	279	273	2	3	7	27	26	40	8	42	44
0	3	6	191	211		28	88	85		54	130	132		3	8	93	92	40	9	193	188
0	3	7	38	28		29	193	193		55	190	190	2	4	0	73	72	60	0	569	562
0	3	8	412	412		210	59	62		00	116	119	2	4	1	116	114	60	2	50	50

$\mathrm{Ba} \mathrm{MO}_{3}$ analogs these distances are $2.61 \AA$ in $\mathrm{BaCrO}_{3}, 2.63 \AA$ in BaMnO_{3}, and $2.63 \AA$ in BaRhO_{3}. These short distances result from some d orbital overlap between neighboring metal atoms. The $\mathrm{Cr}-\mathrm{Cr}$ distance observed in other BaCrO_{3} polytypes varies slightly (average distances are given): 4 H $(2.61 \AA), 6 \mathrm{H}(2.65 \AA), 14 \mathrm{H}(2.64 \AA)$, and 27R ($2.63 \AA$). The observed metal-to-metal distance in the 4 H polytype of BaCrO_{3} was found to be the shortest and this particular polytype possesses the largest amount of hexagonal packing character. A strong correlation between these two factors was developed from these structural investigations.

All the other features of the structure for the four-layer polytype of BaCrO_{3} are consistent with the model. The average $\mathrm{Cr}-\mathrm{O}$ bond distance of $1.94 \AA$ is in agreement with the predicted (15) value of $1.95 \AA$. The twelve-coordinated sites for each Ba atom are well behaved and no unusual features were encountered in the structural determination.

Acknowledgments

The author wishes to acknowledge the financial support from the University of Connecticut Research

Foundation and the assistance of Dr. J. B. Anderson. Computations were carried out at the University of Connecticut Computer Center.

References

I. B. L. Chamberland, Inorg. Chem. 8, 286 (1969).
2. B. L. Chamberland and L. Katz, Acta Crystallogr. Sect. B 38, 54 (1982).
3. P. S. Haradem, B. L. Chamberland, and L. Katz, J. Solid State Chem. 34, 59 (1980).
4. D. M. Evans and L. Katz, J. Solid State Chem. 6, 459 (1973).
5. L. Finger, Program COMBIN, Carnegie Institute of Washington, Geophysical Laboratory (1970).
6. A. Hardy, Acta Crystallogr. 15, 179 (1962).
7. B. L. Chamberland and J. B. Anderson, J. Solid State Chem. 39, 114 (1981).
8. K. Kuroda, N. Ishizawa, N. Mizutani, and M. Kato, J. Solid State Chem. 38, 297 (1981).
9. W. R. Busing, K. O. Martin, and H. A. Levy, ORNL-TM-305 (1962).
10. "International Tables for X-Ray Crystallography," Vol. IV, p. 99, Kynoch Press, Birmingham, England (1974).
11. C. K. JOHNSON, "ORTEP," ORNL-3739, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1965).
12. L. Katz and R. Ward, Inorg. Chem. 3, 205 (1964).
13. J. M. Longo and J. F. Kafalas, Mater. Res. Bull. 3, 687 (1968).
14. P. L. Gai, A. J. Jacobson, and C. N. R. Rao, Inorg. Chem. 15, 480 (1976).
15. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).

[^0]: ${ }^{a}$ Thermal parameters are multiplied by 100 . The B^{\prime} 's are defined by the general temperature factor \exp $\left[-\frac{3}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33}{ }^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$.
 ${ }^{b}$ For Ba and Cr atoms, B_{22} and B_{12} were not refined since $B_{11}=B_{22}$, and $B_{12}=\frac{1}{2} B_{11}$. For $\mathrm{O}(2)$, the y parameter was not refined since $y=\frac{1}{2} x$; and $B_{12}=\frac{1}{2} B_{22}$.

